

 Navigation

 	
 index

 	
 next |

 	tcpy 0.0.1 documentation

TCPY - Python Yogurt

Contents:

	Overview
	Installation

	TCPY Tutorial

	TCPServer Objects
	TCPServer([host, port, commands, threads, poll_intv])

	listen()

	The TCPServer.commands Dictionary

	TCPHandler Objects
	__init__(**params)

	execute()

	success([**kwargs])

	error(message[, **kwargs])

	send(data)

	recv()

	TCPClient Objects
	TCPClient([host, port])

	connect()

	send(data)

	recv()

	disconnect()

	execute(cmd[, **params])

 Copyright 2014, Patrick Brodie.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tcpy 0.0.1 documentation

Overview

tcpy is a lightweight framework for asynchronous TCP Servers and associated clients.

Read, star, or contribute to the source code on Github [https://github.com/pbrodie/tcpy/]

Installation

tcpy is hosted on PyPI. Easiest installation is with pip:

pip install tcpy

Alternatively, you can download a tarball of the source here [https://pypi.python.org/pypi/tcpy/].

Note

tcpy versions do not yet exist for Python 3 or for Windows.

 Copyright 2014, Patrick Brodie.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tcpy 0.0.1 documentation

TCPY Tutorial

tcpy makes it extremely simple to make TCP Servers and associated clients in Python.

Associate a command to a TCPHandler, define its execute() method and tcpy has you up and running:

Server
from tcpy import TCPServer, TCPHandler

Our handler class must inherit from TCPHandler
class AdditionHandler(TCPHandler):
 def __init__(self, x, y):
 # Capture parameters as members of the class
 self.x = x
 self.y = y

 def execute(self):
 # success() will provide a well-formed success response
 return self.success(solution=self.x + self.y)

Instantiate the server at default localhost:7272
server = TCPServer()
server.commands = {
 # Associate a command to our handler
 'add': AdditionHandler
}

if __name__ == "__main__":
 # Start listening for requests!
 server.listen()

On the client side, just execute() one of the server’s commands:

Client
from tcpy import TCPClient

print TCPClient().execute(cmd="add", x=1, y=2)

Which outputs: {'solution': 3, 'success': True}.

 Copyright 2014, Patrick Brodie.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tcpy 0.0.1 documentation

TCPServer Objects

The TCPServer class handles accepting requests and queuing tasks for worker threads to complete.

TCPServer([host, port, commands, threads, poll_intv])

	Initializes an instance of the TCPServer class.

	
	host: the hostname where the server will live. Defaults to locahost.

	port: the port on which the server will listen. Defaults to 7272.

	commands: dictionary mapping command strings to handler classes.

	threads: number of worker threads the server will spawn to execute tasks. Defaults to 4.

	poll_intv: the period of time a worker will sleep before polling the request queue for work.

listen()

Tells a TCPServer object to begin listening for requests. TCPY will log the host and port where it is listening to stdout.

The TCPServer.commands Dictionary

The commands dictionary of a TCPServer object is how the server knows which commands to execute. It maps command names (strings) to handler classes.

For example:

from tcpy import TCPServer
from foo import FooHandler

server = TCPServer()
server.commands = {
 'foo': FooHandler # maps the command 'foo' onto the FooHandler class
}
server.listen()

Defining commands this way allows clients to execute specific commands similar to a remote procedure call. A TCPClient may call execute on a given command, and the TCPServer will instantiate the appropriate handler class to serve the client’s request.

 Copyright 2014, Patrick Brodie.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tcpy 0.0.1 documentation

TCPHandler Objects

In tcpy, commands are associated to handlers. A client can ask the server to execute a command, and the server will invoke the handler whose responsibility is to carry out that command. The TCPHandler class is the base building block for implementing handlers, which compose a TCPServer‘s functionality.

All tcpy handlers should inherit from this class and define their behavior in an execute() method.

Associating a string command to a handler class within the TCPServer‘s command dictionary will give the server the ability to execute the handler.

__init__(**params)

All parameters passed by a client with a request will be forwarded into the appropriate handler’s __init__() method. They should be captured here as members of the handler class.

Note

In many cases a client’s connection to the server will need to be maintained to communicate back and forth. Calling super(MyHandler, self).__init__() when initializing a handler will give the handler access to the connection to the client.

execute()

Defines the behavior of a given handler. Called on a worker thread when the command associated with a given handler is requested by a client.

Note

Must be implemented by subclasses of the TCPHandler class.

success([**kwargs])

Provides a wrapper for well-formed success responses. Returns a dictionary of the form:

{
 'success': True,
 ... # kwargs
}

error(message[, **kwargs])

Provides a wrapper for well-formed error responses. Returns a dictionary of the form:

{
 'error': True,
 'message': message,
 ... # kwargs
}

send(data)

Sends the given data (in dictionary form) to a client without closing the connection.

Note

A handler must call its parent’s __init__() method in order to use the connection.

recv()

Receives data from a connected client and returns it in dictionary form.

Note

A handler must call its parent’s __init__() method in order to use the connection.

 Copyright 2014, Patrick Brodie.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	tcpy 0.0.1 documentation

TCPClient Objects

The TCPClient class provides a concise interface for connecting and speaking to a TCPServer instance.

TCPClient([host, port])

	Instantiates a TCPClient object.

	
	host: The host the target server is listening on. Defaults to localhost.

	port: The port the target server is listening on. Defaults to 7272.

connect()

Connects to the server.

Note

Available in v0.0.5 or higher. For prior versions, use self.conn.connect()

send(data)

Sends the given data to the server.

recv()

Receives data from the server and returns it.

disconnect()

Closes a connection to the server.

Note

Available in v0.0.5 or higher. For prior versions, use self.conn.finish()

execute(cmd[, **params])

Calls the server to execute the given command and returns the result.

 Copyright 2014, Patrick Brodie.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	tcpy 0.0.1 documentation

Index

 Copyright 2014, Patrick Brodie.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

search.html

 Navigation

 		
 index

 		tcpy 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Patrick Brodie.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/comment-close.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/file.png

_static/down-pressed.png

_static/plus.png

